ATLAS MOTION PLATFORM MECANUM WHEEL JACOBIAN IN THE VELOCITY AND STATIC FORCE DOMAINS

Jonathan J. Plumpton, M. John D. Hayes, Robert G. Langlois, Bruce V. Burlton
Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada
Email: jonathanplumpton@cmail.carleton.ca; jhayes@mae.carleton.ca; rlangloi@mae.carleton.ca; bburlton@mae.carleton.ca

ABSTRACT

Conventional training simulators commonly use the hexapod configuration to provide motion cues. While widely used, studies have shown that hexapods are incapable of producing the range of motion required to achieve high fidelity simulation required in many applications. Atlas is a six degree of freedom vehicle operating training simulator motion platform where orienting is decoupled from positioning, and unbounded rotation is possible about any axis. Angular displacements are achieved by manipulating the cockpit contained in a 2.9 metre (9.5 foot) diameter sphere with three Mecanum wheel actuators. The angular velocity Jacobian, J_ω, maps the desired angular velocity of the sphere to the required speeds of the three Mecanum wheels, while the static force Jacobian, J_τ, maps the static moment vector required to statically orient the sphere to the static torques required by the three Mecanum wheels. In this paper, the two Jacobians are derived independently, and it is confirmed that $J_\omega = J_{\tau}^T$, as it must. The implications on the required normal forces at the interface between the sphere and three Mecanum wheel contact patches are discussed.

Keywords: Unbounded angular displacement; velocity and static force Jacobians; normal forces.

JACOBIAN DES ROUES MECANUM DU PLATFORME DE MOTION ATLAS DANS LES DOMAINES DE FORCE DE VÉLOCITÉ ET STATIQUE

RÉSUMÉ

Les simulateurs d’entraînement conventionnels utilisent souvent la configuration hexapod pour fournir les indices de mouvement. Bien que c’est largement utilisé, des études montre que les hexapods sont incapables de produire l’amplitude de mouvement nécessaire pour atteindre une simulation de haute fidélité qui est requis dans plusieurs applications. Atlas est un véhicule de six degrés de liberté qui utilise une plateforme de motion d’entraînement simulé où l’orientation est découplée de la position, et rotation illimitée est possible sur tous les possibles axis. Déplacement angulaire est atteins par manipuler la cabine de pilotage contenus dans une sphère de 2.9 mètres (9.5 pieds) en diamètre avec trois actionneurs de roues mecanum. La vécocité angulaire Jacobian, J_ω, esquisse la vécocité angulaire désirée de la sphère à la vitesse requis des trois roues mecanum, pendant que la force statique Jacobian, J_τ, esquisse le vecteur du moment statique requis pour orienter statiquement la sphère aux torques statiques requis par les trois roues mecanum. Dans ce papier, les deux Jacobians sont dérivé indépendamment, et c’est confirmer que $J_\omega = J_{\tau}^T$, comme il faut. Les implications sur les forces normales requis à l’interface entre la sphère et les aires de contact des trois roues mecanum sont discutés.

Mots-clés : Déplacement angulaire illimité ; Jacobians de vécocité et forces statique ; forces normales.
1. INTRODUCTION

Research has been conducted suggesting appropriate minimum levels of motion required for achieving different levels of training fidelity [1]. However, it is widely accepted that the availability of larger ranges of motion, over what is commonly available with conventional hexapod-based simulators, may provide opportunities for improvements in the immersivity of resulting simulations through less aggressive washout filtering. The challenge with conventional Gough-Stewart platform hexapods, that are most often used for land, sea, and air vehicle simulation, is that the six actuator motions and resulting six degree-of-freedom platform motions are all very tightly coupled. As a result, the platform workspaces are generally small relative to the overall platform size, have intricate shape, and are subject to numerous singularities. Further, greater range of angular motion than the typical 20-50 degrees afforded by Gough-Stewart platforms provides improved capability for continuity of motion in directions (such as yaw) in which washout is known to be marginally effective.

Fig. 1. Atlas motion platform.

Relatively few motion simulators are available that are designed to provide large ranges of both translational and rotational motion. Three existing large motion simulator facilities are Desdemona [2], Eclipse II [3], and CyberMotion [4]. An alternative novel motion platform concept called Atlas [5] has also been developed within the Carleton University Simulator Project (CUSP) [6]. CUSP is one of several capstone
design projects run within the Department of Mechanical and Aerospace Engineering at Carleton University. It began in 2002, and since that time has been incrementally developing the Atlas simulator. Figure 1 illustrates the current detail design, and production of a full scale prototype is well underway. Atlas consists of a spherical capsule in which the trainee or equipment under test is placed. The capsule partially rests on a series of three omni-wheels (alternatively referred to as omni-directional wheels) or Mecanum wheels\(^1\) symmetrically arranged on one side of the equator of the spherical capsule. Actively controlling the angular speed of each of the three wheels allows the sphere to be rotated in an unbounded manner about a continuously-variable axis of rotation at continuously-variable angular speed. Alternatively stated, the sphere (capsule) can be commanded to have a time-varying, arbitrary, singularity-free angular velocity. This rotational stage is mounted on a translational stage that is implemented in any classical way to provide the three required translational degrees of freedom.

The benefits of this arrangement are that it provides unbounded rotational motion of the spherical capsule, translational motion is bounded only by the designer-controlled limitations of the translational stage, and the entire workspace is singularity free and dexterous meaning that any configuration within the bounds of the motion envelope can be easily achieved. Also, rotational motions are decoupled from translational motions thereby not limiting motions due to coupling during operation.

1.1. Atlas Translational Actuation

Due to the prohibitive cost of an adequately sized gantry system to provide the translations, a Moog MB-EP-6DOF 2800KG Gough-Stewart hexapod has been acquired for the purpose. The platform has a payload capacity of 2800 kilograms, and the estimated total weight of the upper Atlas platform is less than 1400 kilograms. This component has been purchased and installed in the Atlas lab.

1.2. Atlas Rotational Actuation

Three active Mecanum wheels are used to change the sphere orientation. These wheels offer suitable load-carrying capacity and can provide omnidirectional rotation of the sphere while introducing minimal vibration. Developing Mecanum wheels in-house allowed the weight to be reduced by half and the cost to be reduced by two thirds compared to commercially-available wheels. It also allowed for control over the characteristics of the interface between the Mecanum wheels and the sphere surface. Urethane roller material and finish has been selected to provide a contact patch of 1290 square millimetres (2 square inches), approximately\(^2\), and a minimum coefficient of friction of 0.6. Moreover, the roller profiles are elliptical thereby enhancing the transition between rollers as the Mecanum wheel rotates, further reducing vibration.

In addition to the active Mecanum wheels, two rings of smaller passive Mecanum wheels, each containing 12 passive wheels, will be used to help constrain translation of the sphere relative to the support structure, and to ensure sufficient normal force at the contact patch of the driven wheels to prevent slip in the driving direction, see Figure 1. Production of both passive and active wheels is currently ongoing.

2. OBJECTIVES

The main objectives of the work presented in this paper are to establish the relations between desired sphere angular velocities and the corresponding Mecanum wheel speeds required, as well as the relations between a desired sphere orientation and the corresponding static torques required. These relations are conveniently expressed in the form of a Jacobian. It is, by definition, a mapping between time rates of

\(^1\)Mecanum wheels are similar to omni-wheels except that the castor axles are rotated 45 degrees relative to the circumferential direction of the wheels.

\(^2\)Please note that the use of dual metric and Imperial dimensioning reflects the reality of design in Canada: the standard is metric; however, many stock components are sized in Imperial units.
change. By convention, for velocity-level robot kinematics it is the mapping between the time rates of change of the joint variables to the time rates of change of the position and orientation of the end effector \([7]\). The transpose of the velocity-level Jacobian is the same as the mapping of the static forces acting at the end effector into equivalent joint torques \([7]\).

The velocity level Jacobian for spheres manipulated using omniwheels was presented in \([8]\). However, the geometry for the rollers on Mecanum wheels is different, and additional kinematic parameters must be accounted for. Hence, in this paper the Jacobian will be derived in two independent ways. First, the Jacobian used to compute the magnitude and direction of the torque created in rotating the sphere based on the torque applied to the Mecanum wheels, \(\mathbf{J}_\tau \), will be derived. Next, a Jacobian will be derived for mapping the desired angular velocity of the sphere to the required velocities of the mecanum wheels, \(\mathbf{J}_\omega \). This derivation is intended to serve as a verification of the previous one, since it must be that \(\mathbf{J}_\omega = \mathbf{J}_\tau^T \).

3. STATIC FORCE–TORQUE JACOBIAN

In this section the Jacobian to be used to determine the magnitude and direction of the torque created by rotating the sphere, based on the torque applied to the Mecanum wheels, is derived. Required variables are defined in Figure 2. The total torque \(\mathbf{M} \) created by the Mecanum wheels acting on the sphere is given by

\[
\mathbf{M} = \begin{bmatrix} M_X & M_Y & M_Z \end{bmatrix}^T,
\]

where \(M_i \) are the torque components expressed in the inertial \(\text{xyz} \) coordinate system. Position vectors of the idealized Mecanum wheel contact points \(\mathbf{A}_i \) relative to the centre of the sphere \(\mathbf{G} \) are given by

\[
\mathbf{R}_{\mathbf{A}_i/\mathbf{G}} = R \begin{bmatrix} C\phi_i C\theta_i & S\phi_i C\theta_i & S\theta_i \end{bmatrix}^T,
\]

where \(R \) is the sphere radius, \(\phi_i \) is the counterclockwise rotation of wheel \(i \) about the \(Z \) axis measured relative to the \(X \) axis, and \(S \) and \(C \) are abbreviations for sine and cosine respectively. The torque vector generated by each wheel is defined as \(\mathbf{\tau}_i \), with the Mecanum wheel having the following radial vector of point \(\mathbf{A}_i \) relative to point \(\mathbf{B}_i \), the centre of the respective Mecanum wheel, opposite in direction to \(\mathbf{R}_{\mathbf{A}_i/\mathbf{G}} \), or equivalent to

\[
\mathbf{r}_{\mathbf{A}_i/\mathbf{B}_i} = r \begin{bmatrix} -C\phi_i C\theta_i & -S\phi_i C\theta_i & -S\theta_i \end{bmatrix}^T,
\]

where \(r \) is the radius of the mecanum wheel. The Mecanum wheels have tractive force vectors along the roller axes that are given by

\[
\mathbf{F}_{\mathbf{A}_i} = F_{\mathbf{A}_i} \begin{bmatrix} -C\phi_i S\gamma_i S\theta_i - S\phi_i S\gamma_i + C\phi_i C\gamma_i & -S\phi_i S\gamma_i S\theta_i - C\phi_i S\gamma_i & S\gamma_i C\theta_i \end{bmatrix}^T,
\]

where \(\gamma_i \) is the angle of the Mecanum wheel roller axis relative to the plane of the wheel, and

\[
F_{\mathbf{A}_i} = \frac{\mathbf{\tau}_i}{r C\gamma_i},
\]

as shown in Figure 3. The contribution of the force \(\mathbf{F}_{\mathbf{A}_i} \) to the overall torque applied to the sphere is then calculated as follows

\[
\mathbf{M}_i = \mathbf{R}_{\mathbf{A}_i/\mathbf{G}} \times \mathbf{F}_{\mathbf{A}_i} = \frac{r \mathbf{\tau}_i R}{r C\gamma_i} \begin{bmatrix} -C\phi_i C\gamma_i S\theta_i + S\phi_i S\gamma_i & -S\phi_i S\gamma_i S\theta_i - C\phi_i S\gamma_i & C\gamma_i C\theta_i \end{bmatrix}^T,
\]

Summing the three sphere torque vectors together results in the total torque applied to the sphere

\[
\mathbf{M} = \sum \mathbf{M}_i = \mathbf{M}_1 + \mathbf{M}_2 + \mathbf{M}_3.
\]
where

\[
\begin{bmatrix}
-C\phi_1 S\theta_1 + S\phi_1 T\gamma_1 & -C\phi_2 S\theta_2 + S\phi_2 T\gamma_2 & -C\phi_3 S\theta_3 + S\phi_3 T\gamma_3 \\
-S\phi_1 S\theta_1 - C\phi_1 T\gamma_1 & -S\phi_2 S\theta_2 - C\phi_2 T\gamma_2 & -S\phi_3 S\theta_3 - C\phi_3 T\gamma_3 \\
C\theta_1 & C\theta_2 & C\theta_3
\end{bmatrix}
\begin{bmatrix}
\bar{\tau}_1 \\
\bar{\tau}_2 \\
\bar{\tau}_3
\end{bmatrix},
\]

(8)

\(\bar{\tau}\) represents the magnitudes for the three Mecanum wheel torques, and \(T\) is the abbreviation for tangent. This expression defines the Jacobian \(J_\tau\) between driven wheel torque and sphere activation torque.

3Note that in this case \(T^{-1}\) is referring to the cotangent as opposed to the arctangent.
\[M = J_\tau \vec{\tau}, \]

(9)

where the Jacobian is given by

\[
J_\tau = \frac{R}{r} \begin{bmatrix}
-C\phi_1 S\theta_1 + S\phi_1 T\gamma_1 & -C\phi_2 S\theta_2 + S\phi_2 T\gamma_2 & -C\phi_3 S\theta_3 + S\phi_3 T\gamma_3 \\
-S\phi_1 S\theta_1 - C\phi_1 T\gamma_1 & -S\phi_2 S\theta_2 - C\phi_2 T\gamma_2 & -S\phi_3 S\theta_3 - C\phi_3 T\gamma_3 \\
C\theta_1 & C\theta_2 & C\theta_3
\end{bmatrix}. \tag{10}
\]

4. ANGULAR VELOCITY JACOBIAN

As a means of verifying the results of Section 3, a Jacobian was derived for mapping the angular velocities of the wheels to the angular velocity of the Atlas sphere. First, let the sphere have the following angular velocity about the centre of the sphere \(G \),

\[
\Omega = \begin{bmatrix} \Omega_X & \Omega_Y & \Omega_Z \end{bmatrix}^T, \tag{11}
\]

each Mecanum wheel having an angular velocity given by

\[
\omega_i = \begin{bmatrix} \omega_{ix} \\ \omega_{iy} \\ \omega_{iz} \end{bmatrix} = \omega_i \begin{bmatrix} C\phi_i S\theta_i \\ S\phi_i S\theta_i \\ -C\theta_i \end{bmatrix}. \tag{12}
\]

Each Mecanum wheel will have a unit vector along the roller axis, shown in Figure 4, that has the following form

\[
\hat{r}_{du_i} = \begin{bmatrix} -C\phi_i S\gamma_i S\theta_i - S\phi_i C\gamma_i \\ -S\phi_i S\gamma_i S\theta_i + C\phi_i C\gamma_i \\ S\gamma_i C\theta_i \end{bmatrix}. \tag{13}
\]

The kinematics at point \(A_i \) can now be evaluated with respect to both the sphere and the Mecanum wheel \(i \). The velocity of point \(A_i \) on the sphere side of the Mecanum wheel/sphere interface is

\[
\mathbf{V}_{A_i} = \Omega \times \mathbf{R}_{A_i/G} = R \begin{bmatrix} \Omega_X S\theta_i - \Omega_Z S\phi_i C\theta_i \\ \Omega_Z C\phi_i C\theta_i - \Omega_X S\phi_i C\theta_i \\ \Omega_Y S\phi_i C\theta_i - \Omega_Y C\phi_i C\theta_i \end{bmatrix}, \tag{14}
\]
while the velocity of point A_i on the Mecanum wheel side of the Mecanum wheel/sphere interface is a result of the wheel rotating about the wheel axis

$$v_{A_i} = \omega_i \times r_{A_i} = \omega_i r \begin{bmatrix} -S\phi_i \\ C\phi_i \\ 0 \end{bmatrix}. \quad (15)$$

From Figure 4, v_{A_i} is the vector sum of v_{A_i} and v_r, which is the velocity vector of the Mecanum wheel roller. Furthermore, assuming no slip, v_{A_i} and v_r must create the same projection, which gives the following result

$$V_{A_i} \cdot \hat{r}_{du_i} = v_{A_i} \cdot \hat{r}_{du_i}, \quad (16)$$

where the left-hand side is

$$V_{A_i} \cdot \hat{r}_{du_i} = \begin{bmatrix} S\phi_i T\gamma_i - C\phi_i S\theta_i C\gamma_i \\ -C\phi_i T\gamma_i - S\phi_i S\theta_i C\gamma_i \\ C\theta_i C\gamma_i \end{bmatrix}^T \begin{bmatrix} \Omega_X \\ \Omega_Y \\ \Omega_Z \end{bmatrix}, \quad (17)$$

and the right-hand side is

$$v_{A_i} \cdot \hat{r}_{du_i} = \omega_i r C\gamma_i. \quad (18)$$

Equating these two results and solving for the signed magnitude of the angular velocity for Mecanum wheel i results in

$$\omega_i = \frac{R}{r} \begin{bmatrix} S\phi_i T\gamma_i - C\phi_i S\theta_i \\ -C\phi_i T\gamma_i - S\phi_i S\theta_i \\ C\theta_i \end{bmatrix}^T \begin{bmatrix} \Omega_X \\ \Omega_Y \\ \Omega_Z \end{bmatrix}. \quad (19)$$

Gathering the set of linear equations for all three driven Mecanum wheels on Atlas results in the following equation

$$\begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} = \frac{R}{r} \begin{bmatrix} S\phi_1 T\gamma_1 - C\phi_1 S\theta_1 & -C\phi_1 T\gamma_1 - S\phi_1 S\theta_1 & C\theta_1 \\ -S\phi_2 T\gamma_2 - C\phi_2 S\theta_2 & -C\phi_2 T\gamma_2 - S\phi_2 S\theta_2 & C\theta_2 \\ -S\phi_3 T\gamma_3 - C\phi_3 S\theta_3 & -C\phi_3 T\gamma_3 - S\phi_3 S\theta_3 & C\theta_3 \end{bmatrix} \begin{bmatrix} \Omega_X \\ \Omega_Y \\ \Omega_Z \end{bmatrix}. \quad (20)$$

The relationship between the magnitudes of the angular velocities of the Mecanum wheels and the angular velocity of the sphere can be summarized by the following equation
\[\dot{\omega} = J_\omega \Omega. \]
(21)

where \(\dot{\omega} \) represents the magnitudes of the angular velocities of the Mecanum wheels, and the corresponding Jacobian is defined as

\[
J_\omega = \frac{1}{r} \begin{bmatrix}
S\phi_1 T \gamma_1 - C\phi_1 S \theta_1 & -C\phi_1 T \gamma_1 - S\phi_1 S \theta_1 & C \theta_1 \\
S\phi_2 T \gamma_2 - C\phi_2 S \theta_2 & -C\phi_2 T \gamma_2 - S\phi_2 S \theta_2 & C \theta_2 \\
S\phi_3 T \gamma_3 - C\phi_3 S \theta_3 & -C\phi_3 T \gamma_3 - S\phi_3 S \theta_3 & C \theta_3
\end{bmatrix}.
\]
(22)

At this point it can be observed that

\[J_\omega = J_\tau^T, \]
(23)

which is as expected.

5. ATLAS TORQUE ANALYSIS

Having now derived a Jacobian for torques and another Jacobian for angular velocities, the following sections describe how the Atlas dynamic model can be used in sizing the motors for driving the Mecanum wheels as well as determining the normal force that the driven wheels must apply to the sphere in order to maintain sufficient traction.

5.1. Sphere Torque

The first step in determining the maximum wheel torque is to determine the maximum torque that must be applied to the sphere during operation. The sphere torque is found using the generalized moment balance equation

\[\mathbf{M} = \mathbf{I}_s \mathbf{\alpha} + \mathbf{\Omega} \times \mathbf{I}_s \mathbf{\Omega}. \]
(24)

where \(\mathbf{I}_s \) is the mass moment of inertia matrix of the Atlas sphere with respect to its geometric centre, and the vectors \(\mathbf{\alpha} \) and \(\mathbf{\Omega} \) are found using user-defined magnitudes as follows

\[
\mathbf{\alpha} = |\mathbf{\alpha}| \begin{bmatrix}
S \theta_\alpha C \phi_\alpha & S \theta_\alpha S \phi_\alpha & C \theta_\alpha
\end{bmatrix}^T.
\]
(25)

\[
\mathbf{\Omega} = |\mathbf{\Omega}| \begin{bmatrix}
S \theta_\Omega C \phi_\Omega & S \theta_\Omega S \phi_\Omega & C \theta_\Omega
\end{bmatrix}^T.
\]
(26)

where \(\theta_i \) and \(\phi_i \) represent similar angles to those representing wheel position in Figure 2, and are all independent. The process involves iterating Equation (24) through different values of \(\theta_\alpha \), \(\phi_\alpha \), \(\theta_\Omega \) and \(\phi_\Omega \) between -180 degrees and +180 degrees. The maximum norm of \(\mathbf{M} \) is taken to be the maximum torque experienced by the sphere.

5.2. Wheel Torque

The process to determine the maximum wheel torque is similar to the process for finding the sphere torque. Iteration is performed for different directions for the sphere torque vector

\[
\mathbf{M} = |\mathbf{M}| \begin{bmatrix}
S \theta_\mathbf{M} C \phi_\mathbf{M} & S \theta_\mathbf{M} S \phi_\mathbf{M} & C \theta_\mathbf{M}
\end{bmatrix}^T.
\]
(27)

The torque applied in the driving direction of each wheel is then found using Equation (8) found in Section 3. Iteration of Equation (8) is performed for different values of \(\theta_\mathbf{M} \) and \(\phi_\mathbf{M} \) between -180 degrees and +180 degrees.
degrees and the maximum wheel torque τ is taken to be the maximum component of $\boldsymbol{\tau}$ encountered after all the iterations, because each element of $\boldsymbol{\tau}$ is the signed magnitude of the input torque supplied by each of the three Mecanum wheels.

5.3. Normal Force

The offset angle of the Mecanum wheel roller results in a similar offset between the force caused by the wheel torque and the resultant force along the roller axis. The maximum tangential force will be the result of the maximum wheel torque, and can be calculated as follows

$$F_i = \frac{\tau}{rC\gamma}.$$

(28)

which was previously defined in Section 3. To effectively turn the sphere, this tangential force must be less than the force required to overcome friction. This gives the following relation for the normal force

$$N \geq \frac{F_i}{\mu} = \frac{\tau}{r\mu C\gamma}.$$

(29)

where μ is the friction coefficient.

6. APPLICATION

The Atlas motion platform will be constructed with a 2.9 metre (9.5 foot) external diameter sphere and three 381 millimetre (15 inch) diameter Mecanum wheels. The design calls for the wheels to be positioned 45 degrees below the sphere equator, and the wheels are to be separated by 120 degrees around the z axis, with the x axis oriented such that it is aligned with the first wheel. Given these parameters, the static force-torque Jacobian is evaluated as

$$J_\tau = \begin{bmatrix} 5.374 & 3.895 & -9.269 \\ -7.600 & 8.454 & -0.854 \\ 5.374 & 5.374 & 5.374 \end{bmatrix}. $$

(30)

In the final stages of development, the fully-loaded Atlas sphere had inertia estimated as

$$I_s = \begin{bmatrix} 3.216 \times 10^6 & 1.629 \times 10^3 & 2.099 \times 10^7 \\ 1.629 \times 10^3 & 2.954 \times 10^6 & 1.485 \times 10^5 \\ 2.099 \times 10^2 & 1.485 \times 10^5 & 3.138 \times 10^6 \end{bmatrix} \text{lb} \cdot \text{in}^2,$$

(31)

with intentions of achieving a maximum angular acceleration of $\alpha = 350$ degrees per second squared and a maximum angular velocity of $\omega = 35$ degrees per second. Applying the techniques from Section 5 to these parameters, it was determined that the sphere would be expected to require a maximum torque of close to 51,000 pound inches, with the wheels required to apply a maximum torque of roughly 4800 pound inches under an applied normal force of approximately 1500 pounds. The results of the analysis are further shown in Figure 5 which emphasizes the requirement for applying the analysis to different directions, as application of the maximum required sphere torque in the wrong direction would result in underestimating the maximum required wheel torques and forces by nearly 50 percent.

7. CONCLUSIONS

In this paper, novel generalized kinematic and static force models for the Atlas spherical platform, actuated with Mecanum wheels, has been presented. The model was first formulated at the static force level
leading to an expression for J_τ, and verified by the model formulated at the velocity level, leading to J_{ω}. The results confirm that $J_{\omega} = J^T_\tau$, as it must. This paper further described how the kinematic and static force models are required for accurate control of the rotational actuation for the Atlas platform, as well as being essential in determining the mechanical requirements of the actuation system. This analysis was applied to the design specifications for the platform, with the results demonstrating the need for the rigorous steps that were suggested for the analysis.

REFERENCES